论文标题
稀疏的二次$ T1 $定理
A sparse quadratic $T1$ theorem
论文作者
论文摘要
我们表明,所有满足最小本地测试条件的Littlewood-Paley Square函数$ S $由稀疏形式主导,\ begin {equation*} \ langle(sf)^2,g \ rangle \ le c \ sum_ {i \ in \ mathscr {s}}} \ langle \ lvert \ lvert f \ rvert \ rangle_i^2 \ langle \ langle \ lvert \ lvert g \ rvert g \ rvert \ rvert \ rangle_i \ rangle_i \ lvert i i \ rvert。 \ end {equation*}这意味着所有$ a_p $权重的强度加权$ l^p $估计,对$ a_p $特征的敏锐依赖。证明使用随机的二元格网,在HAAR的基础上分解以及停止时间的论点。
We show that any Littlewood--Paley square function $S$ satisfying a minimal local testing condition is dominated by a sparse form, \begin{equation*} \langle (Sf)^2,g \rangle\le C \sum_{I \in \mathscr{S}} \langle \lvert f\rvert\rangle_I^2 \langle \lvert g\rvert\rangle_I \lvert I\rvert . \end{equation*} This implies strong weighted $L^p$ estimates for all $A_p$ weights with sharp dependence on the $A_p$ characteristic. The proof uses random dyadic grids, decomposition in the Haar basis, and a stopping time argument.