论文标题
自适应运动去膨胀的空间斑块层次结构网络
Spatially-Attentive Patch-Hierarchical Network for Adaptive Motion Deblurring
论文作者
论文摘要
本文解决了动态场景的动态造成问题的问题。尽管端到端完全卷积的设计最近在非均匀运动中的最新动态推动了最先进的设计,但他们的性能 - 复杂性权衡仍然是最佳的。现有方法通过增加通用卷积层和内核大小的数量来实现大型接受场,但这是以型号大小和推理速度增加为代价的。在这项工作中,我们提出了一种有效的像素自适应和特征专注的设计,用于处理不同空间位置的大型模糊变化,并适应每个测试图像。我们还提出了一个有效的内容感知的全局本地滤波模块,该模块不仅通过考虑全局依赖性,而且还通过动态利用相邻的像素信息来显着提高性能。我们使用由上述模块组成的补丁层次结构架构,该体系结构隐含地发现了输入图像中存在的模糊中的空间变化,然后又执行了中间特征的局部和全局调制。与先前在Deblurring基准测试的现有艺术相比,广泛的定性和定量比较表明,我们的设计对准确性和速度的最先进进行了重大改进。
This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel-size, but this comes at the expense of of the increase in model size and inference speed. In this work, we propose an efficient pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We also propose an effective content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighbouring pixel information. We use a patch-hierarchical attentive architecture composed of the above module that implicitly discovers the spatial variations in the blur present in the input image and in turn, performs local and global modulation of intermediate features. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our design offers significant improvements over the state-of-the-art in accuracy as well as speed.