论文标题

机械超材料的扩展微态计算均匀化,表现出多种几何模式转换

Extended Micromorphic Computational Homogenization for Mechanical Metamaterials Exhibiting Multiple Geometric Pattern Transformations

论文作者

Rokoš, O., Ameen, M. M., Peerlings, R. H. J., Geers, M. G. D.

论文摘要

蜂窝状微结构已显示出在压缩下表现出局部弹性屈曲,并具有三种可能的几何屈曲模式或模式转换。可以通过控制沿两个正交方向所施加的压缩来诱导单个模式转换,也可以在空间分布的模式上进行。对该物业的开发具有巨大的潜力,例如软机器人的应用。对于快速,最佳的设计,需要有效的数值工具,能够弥合微观结构和工程量表之间的差距,同时捕获所有相关的模式转换。因此,本文介绍了一种表现出多种模式转化的材料的微型均质均质化框架,该框架扩展了Rokoš等人的微态方案,J。Mech。物理。固体123,119-137(2019),用于仅表现出单个模式转换的弹性分代材料。该方法基于一个合适的运动学ANSATZ,该运动学由光滑部分,一组空间相关的波动场以及剩余的空间不相关的微质量截止场组成。尽管后一个场在每个宏观材料点的水平上被忽略或凝结,而空间相关的波动场的幅度在宏观上出现为微态磁场。我们开发了这些微态领域必须满足的平衡方程以及计算均质化方法,以计算这些方程式中包含的广义应力。为了证明该方法的潜力,研究了加载案例,从而研究了时空和时间上混合模式的混合模式,并与全尺度模拟进行了比较。结果表明,提出的框架能够捕获相关现象,尽管解决方案的固有多样性需要对初始猜测的敏感性。

Honeycomb-like microstructures have been shown to exhibit local elastic buckling under compression, with three possible geometric buckling modes, or pattern transformations. The individual pattern transformations, and consequently also spatially distributed patterns, can be induced by controlling the applied compression along two orthogonal directions. Exploitation of this property holds great potential in, e.g., soft robotics applications. For fast and optimal design, efficient numerical tools are required, capable of bridging the gap between the microstructural and engineering scale, while capturing all relevant pattern transformations. A micromorphic homogenization framework for materials exhibiting multiple pattern transformations is therefore presented in this paper, which extends the micromorphic scheme of Rokoš et al., J. Mech. Phys. Solids 123, 119-137 (2019), for elastomeric metamaterials exhibiting only a single pattern transformation. The methodology is based on a suitable kinematic ansatz consisting of a smooth part, a set of spatially correlated fluctuating fields, and a remaining, spatially uncorrelated microfluctuation field. Whereas the latter field is neglected or condensed out at the level of each macroscopic material point, the magnitudes of the spatially correlated fluctuating fields emerge at the macroscale as micromorphic fields. We develop the balance equations which these micromorphic fields must satisfy as well as a computational homogenization approach to compute the generalized stresses featuring in these equations. To demonstrate the potential of the methodology, loading cases resulting in mixed modes in both space and time are studied and compared against full-scale simulations. It is shown that the proposed framework is capable of capturing the relevant phenomena, although the inherent multiplicity of solutions entails sensitivity to the initial guess.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源