论文标题

着色$(SP_1+P_5)$ - 免费图形:MIM宽度的观点

Colouring $(sP_1+P_5)$-Free Graphs: a Mim-Width Perspective

论文作者

Brettell, Nick, Horsfield, Jake, Paulusma, Daniel

论文摘要

我们证明,$(k_t,sp_1+p_5)$ - 免费图形的每个$ s \ geq 0 $和$ t \ geq 1 $都有限制的mim宽度,并且有一个多项式时间算法,鉴于班上的图形,可以计算出一个不变的mim-fidth的分支分解。大量的\ np完整图问题成为有界MIM宽度的图形类别的多项式时间溶解,并且可以快速计算分支分解。 $ k $颜色的问题就是这样一个问题的一个例子。对于此问题,我们可以假设输入图为$ k_ {k+1} $ - 免费。然后,由于我们的结果,我们获得了已知结果的新证明,即对于每个固定的$ k \ geq 1 $和$ s \ geq 0 $,$ k $ - 颜色是可解决的多项式时间(SP_1+P_5)$ - 免费图形。实际上,我们的发现表明,这种多项式时间算法的根本原因是该类具有MIM宽度。

We prove that the class of $(K_t,sP_1+P_5)$-free graphs has bounded mim-width for every $s\geq 0$ and $t\geq 1$, and that there is a polynomial-time algorithm that, given a graph in the class, computes a branch decomposition of constant mim-width. A large number of \NP-complete graph problems become polynomial-time solvable on graph classes with bounded mim-width and for which a branch decomposition is quickly computable. The $k$-Colouring problem is an example of such a problem. For this problem, we may assume that the input graph is $K_{k+1}$-free. Then, as a consequence of our result, we obtain a new proof for the known result that for every fixed $k\geq 1$ and $s\geq 0$, $k$-Colouring is polynomial-time solvable for $(sP_1+P_5)$-free graphs. In fact, our findings show that the underlying reason for this polynomial-time algorithm is that the class has bounded mim-width.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源