论文标题

视频中的人重新识别的共同效率时空交互网络

Co-Saliency Spatio-Temporal Interaction Network for Person Re-Identification in Videos

论文作者

Liu, Jiawei, Zha, Zheng-Jun, Zhu, Xierong, Jiang, Na

论文摘要

人重新识别旨在确定在非重叠摄像机网络中的某些行人。基于视频的重新识别方法最近引起了极大的关注,通过从多个帧中学习功能来扩展基于图像的方法。在这项工作中,我们提出了一个新颖的合作时空互动网络(CSTNET),用于在视频中重新识别人。它捕获了视频框架之间常见的前景区域,并探索了从这些地区到学习判别行人代表的时尚长期环境相互依存的相互依存。具体而言,CSTNET中的多个共同学习模块旨在利用视频框架上的相关信息来从与任务相关区域中提取显着特征并抑制背景干扰。此外,提出了CSTNET内的多个时空相互作用模块,这些模块在此类特征和时空信息相关性上利用了空间和时间长距离上下文相互依存,以增强特征表示。在两个基准上进行的广泛实验证明了该方法的有效性。

Person re-identification aims at identifying a certain pedestrian across non-overlapping camera networks. Video-based re-identification approaches have gained significant attention recently, expanding image-based approaches by learning features from multiple frames. In this work, we propose a novel Co-Saliency Spatio-Temporal Interaction Network (CSTNet) for person re-identification in videos. It captures the common salient foreground regions among video frames and explores the spatial-temporal long-range context interdependency from such regions, towards learning discriminative pedestrian representation. Specifically, multiple co-saliency learning modules within CSTNet are designed to utilize the correlated information across video frames to extract the salient features from the task-relevant regions and suppress background interference. Moreover, multiple spatialtemporal interaction modules within CSTNet are proposed, which exploit the spatial and temporal long-range context interdependencies on such features and spatial-temporal information correlation, to enhance feature representation. Extensive experiments on two benchmarks have demonstrated the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源