论文标题

初步的结果是使用深度学习模仿BLOB,这是一个核交互模型

Preliminary results in using Deep Learning to emulate BLOB, a nuclear interaction model

论文作者

Ciardiello, A., Asai, M., Caccia, B., Cirrone, G. A. P., Colonna, M., Dotti, A., Faccini, R., Giagu, S., Messina, A., Napolitani, P., Pandola, L., Wright, D. H., Mancini-Terracciano, C.

论文摘要

目的:模拟核相互作用的可靠模型对于离子治疗是基础。我们已经展示了Blob(“ Boltzmann-Langevin One Body”),该模型是为了模拟高达几百个MEV/U的重离子相互作用而开发的模型,还可以模拟在同一能量域中的$^{12} $ c反应。但是,对于任何医疗应用,其计算时间太长。因此,我们提出了使用深度学习算法模拟它的可能性。方法:斑点最终状态是在相空间位置找到核子的概率密度函数(PDF)。我们离散了该PDF,并训练了变量自动编码器(VAE)以复制这种离散的PDF。作为概念证明,我们开发并训练了VAE,以模拟Blob,以模拟$^{12} $ C与$^{12} $ C的相互作用,以62 meV/u。为了对这一代人有更多的控制权,我们强迫VAE潜在空间就影响参数($ b $)培训了与VAE共同培训$ b $的分类器。结果:从VAE获得的分布与输入的分布相似,使用VAE用作发电机所需的计算时间可以忽略不计。结论:我们表明,可以使用深度学习方法模拟开发的模型来模拟离子疗法感兴趣的能量范围的核反应。我们预见了C ++中生成部分的实现,并将其与最常用的Monte Carlo Toolkit:Geant4进行连接。

Purpose: A reliable model to simulate nuclear interactions is fundamental for Ion-therapy. We already showed how BLOB ("Boltzmann-Langevin One Body"), a model developed to simulate heavy ion interactions up to few hundreds of MeV/u, could simulate also $^{12}$C reactions in the same energy domain. However, its computation time is too long for any medical application. For this reason we present the possibility of emulating it with a Deep Learning algorithm. Methods: The BLOB final state is a Probability Density Function (PDF) of finding a nucleon in a position of the phase space. We discretised this PDF and trained a Variational Auto-Encoder (VAE) to reproduce such a discrete PDF. As a proof of concept, we developed and trained a VAE to emulate BLOB in simulating the interactions of $^{12}$C with $^{12}$C at 62 MeV/u. To have more control on the generation, we forced the VAE latent space to be organised with respect to the impact parameter ($b$) training a classifier of $b$ jointly with the VAE. Results: The distributions obtained from the VAE are similar to the input ones and the computation time needed to use the VAE as a generator is negligible. Conclusions: We show that it is possible to use a Deep Learning approach to emulate a model developed to simulate nuclear reactions in the energy range of interest for Ion-therapy. We foresee the implementation of the generation part in C++ and to interface it with the most used Monte Carlo toolkit: Geant4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源