论文标题
用粗糙注释来增强语义人类垫子
Boosting Semantic Human Matting with Coarse Annotations
论文作者
论文摘要
语义人类效果旨在估计前景人类地区的每个像素不透明度。这是非常具有挑战性的,通常需要用户交互式内存和大量高质量的注释数据。注释这种数据是劳动密集型的,需要超越普通用户的出色技能,尤其是考虑到人类非常详细的一部分。相比之下,从公共数据集中获取和收集的粗糙注释的人数据集更容易。在本文中,我们建议使用粗糙的注释数据,再加上精细的注释数据,以提高端到端语义人类矩阵,而无需提示作为额外的输入。具体而言,我们使用混合数据训练掩码预测网络,以估算粗语义面具,然后提出一个质量统一网络以统一先前的粗蒙版输出的质量。垫片改进网络含有统一的掩码和输入图像,以预测最终的alpha哑光。收集的粗体注释数据集大大丰富了我们的数据集,允许为真实图像生成高质量的alpha哑光。实验结果表明,该方法对最新方法的性能相当。此外,提出的方法可用于精炼粗糙注释的公共数据集以及语义分割方法,这在很大程度上降低了注释高质量人类数据的成本。
Semantic human matting aims to estimate the per-pixel opacity of the foreground human regions. It is quite challenging and usually requires user interactive trimaps and plenty of high quality annotated data. Annotating such kind of data is labor intensive and requires great skills beyond normal users, especially considering the very detailed hair part of humans. In contrast, coarse annotated human dataset is much easier to acquire and collect from the public dataset. In this paper, we propose to use coarse annotated data coupled with fine annotated data to boost end-to-end semantic human matting without trimaps as extra input. Specifically, we train a mask prediction network to estimate the coarse semantic mask using the hybrid data, and then propose a quality unification network to unify the quality of the previous coarse mask outputs. A matting refinement network takes in the unified mask and the input image to predict the final alpha matte. The collected coarse annotated dataset enriches our dataset significantly, allows generating high quality alpha matte for real images. Experimental results show that the proposed method performs comparably against state-of-the-art methods. Moreover, the proposed method can be used for refining coarse annotated public dataset, as well as semantic segmentation methods, which reduces the cost of annotating high quality human data to a great extent.