论文标题
离子与电子加热在压缩驱动的天体陀螺仪湍流中
Ion versus electron heating in compressively driven astrophysical gyrokinetic turbulence
论文作者
论文摘要
通过非线性混合陀螺仪模拟研究了在压缩驱动(但亚音速)无碰撞湍流中离子和电子之间不可逆加热的分配。我们在离子与电子加热比$ q_ \ rmi/q_ \ rme $中得出处方,这是压缩与alfvénic驱动力比率$ p_ \ p_ \ compr/p_ \ aw $,ion热压与磁性压力与磁性压力$β_\ rmi $的比例$ t_ \ rmi/t_ \ rme $。结果表明,$ q_ \ rmi/q_ \ rme $是$ p_ \ compr/p_ \ aw $的增加功能。当压缩驾驶足够大时,$ q_ \ rmi/q_ \ rme $ agens $ \ simeq p_ \ compr/p_ \ aw $。这表明,在大量压缩波动的湍流中,加热的分配是在注射尺度上而不是在动力学尺度上决定的。对相空间光谱的分析表明,从惯性范围的压缩波动到亚部位尺度的动力学alfvén波的能量转移对于低和高$β_\ rmi $都不存在,这意味着压缩驱动是直接连接到离子熵波动的,这些波动已转化为离子热能。该结果表明,优先电子加热是一种非常特殊的情况,需要低$β_\ rmi $和否或弱的压缩驾驶。我们的加热处方具有广泛的应用,包括太阳风和热吸收磁盘,例如M87和SGR A*。
The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear hybrid gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_\rmi/Q_\rme$ as a function of the compressive-to-Alfvénic driving power ratio $P_\compr/P_\AW$, of the ratio of ion thermal pressure to magnetic pressure $β_\rmi$, and of the ratio of ion-to-electron background temperatures $T_\rmi/T_\rme$. It is shown that $Q_\rmi/Q_\rme$ is an increasing function of $P_\compr/P_\AW$. When the compressive driving is sufficiently large, $Q_\rmi/Q_\rme$ approaches $\simeq P_\compr/P_\AW$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfvén waves is absent for both low and high $β_\rmi$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $β_\rmi$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.