论文标题
托勒密空间的开放式子细节上的双曲线指标具有尖锐的参数边界
Hyperbolic metrics on open subsests of Ptolemaic spaces with sharp parameter bounds
论文作者
论文摘要
结果表明,Z. Zhang和Y. Xiao在托勒密空间的开放子集上的产量的构造时,当子集的边界具有至少两个点时,gromov多发的指标与参数$ \ log 2 $且强烈双曲线且具有强烈的副本,并且具有$ 1 $的$ 1 $,而没有进一步的条件。在Hadamard歧管上构建了一类示例,显示参数的这些估计值很清晰。
It is shown that a construction of Z. Zhang and Y. Xiao on open subsets of Ptolemaic spaces yields, when the subset has boundary containing at least two points, metrics that are Gromov hyperbolic with parameter $\log 2$ and strongly hyperbolic with parameter $1$ with no further conditions on the open set. A class of examples is constructed on Hadamard manifolds showing these estimates of the parameters are sharp.