论文标题

分析算法配置器的性能,用于搜索启发式方法和全球突变操作员

Analysis of the Performance of Algorithm Configurators for Search Heuristics with Global Mutation Operators

论文作者

Hall, George T., Oliveto, Pietro Simone, Sudholt, Dirk

论文摘要

最近,已经证明,一种称为paramrls的简单算法配置器可以有效地识别随机本地搜索要使用的最佳邻域大小,以优化两个标准的基准问题类别。在本文中,我们分析了算法配置器的性能,用于调整标准进化算法中使用的更复杂的全球突变操作员,该算法将$ n $ bit的每个算法与概率$χ/n $独立地翻转,并且必须确定$χ$的最佳价值。当使用两个标准基准问题类别,脊和领导者的实际优化时间与实际优化时间进行比较时,我们比较了配置器的性能。我们严格地证明,将优化时间用作性能度量的所有算法配置器都需要至少与预期优化时间一样大的截止时间来识别最佳配置。如果使用健身指标,则事项大不相同。为了证明这一点,我们证明,即使使用截止时间小于两个问题类别最佳参数值的预期优化时间,即使使用截止时间相当小,也可以识别最佳突变率。

Recently it has been proved that a simple algorithm configurator called ParamRLS can efficiently identify the optimal neighbourhood size to be used by stochastic local search to optimise two standard benchmark problem classes. In this paper we analyse the performance of algorithm configurators for tuning the more sophisticated global mutation operator used in standard evolutionary algorithms, which flips each of the $n$ bits independently with probability $χ/n$ and the best value for $χ$ has to be identified. We compare the performance of configurators when the best-found fitness values within the cutoff time $κ$ are used to compare configurations against the actual optimisation time for two standard benchmark problem classes, Ridge and LeadingOnes. We rigorously prove that all algorithm configurators that use optimisation time as performance metric require cutoff times that are at least as large as the expected optimisation time to identify the optimal configuration. Matters are considerably different if the fitness metric is used. To show this we prove that the simple ParamRLS-F configurator can identify the optimal mutation rates even when using cutoff times that are considerably smaller than the expected optimisation time of the best parameter value for both problem classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源