论文标题

潜在网络结构从高维多元点过程中学习

Latent Network Structure Learning from High Dimensional Multivariate Point Processes

论文作者

Cai, Biao, Zhang, Jingfei, Guan, Yongtao

论文摘要

从大型多元点过程数据中学习潜在网络结构是在广泛的科学和业务应用中的重要任务。例如,我们可能希望根据从神经元集合中记录的尖峰时间估算神经元功能连接网络。为了表征观察到的数据基础的复杂过程,我们提出了一类新的非组织霍克斯工艺类别,这些过程既允许兴奋性和抑制作用。我们使用有效的稀疏最小二乘估计方法来估计潜在网络结构。使用变薄表示,我们为拟议的霍克斯过程的第一阶和二阶统计量建立了浓度不平等。这样的理论结果使我们能够建立非反应误差结合和估计参数的选择一致性。此外,我们描述了基于平方损失的统计量,用于测试背景强度是否恒定。我们通过模拟研究和对神经位峰列车数据集的应用来证明我们提出的方法的功效。

Learning the latent network structure from large scale multivariate point process data is an important task in a wide range of scientific and business applications. For instance, we might wish to estimate the neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To characterize the complex processes underlying the observed data, we propose a new and flexible class of nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent network structure using an efficient sparse least squares estimation approach. Using a thinning representation, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源