论文标题
动作监督的联合阵容分割
Motion-supervised Co-Part Segmentation
论文作者
论文摘要
最新的共同分割方法主要在监督的学习环境中运行,这需要大量注释的培训数据。为了克服这一限制,我们提出了一种自制的深度学习方法,以进行共同分割。与以前的作品不同,我们的方法发展了这样一种观念,即可以利用从视频中推断出的运动信息来发现有意义的对象部分。为此,我们的方法依赖于从同一视频中采样的一对帧。该网络学会了预测部分段以及两个帧之间运动的表示,这允许重建目标图像。通过对公开可用的视频序列进行广泛的实验评估,我们证明我们的方法可以相对于以前的自我监督的共同分割方法来改善分割图。
Recent co-part segmentation methods mostly operate in a supervised learning setting, which requires a large amount of annotated data for training. To overcome this limitation, we propose a self-supervised deep learning method for co-part segmentation. Differently from previous works, our approach develops the idea that motion information inferred from videos can be leveraged to discover meaningful object parts. To this end, our method relies on pairs of frames sampled from the same video. The network learns to predict part segments together with a representation of the motion between two frames, which permits reconstruction of the target image. Through extensive experimental evaluation on publicly available video sequences we demonstrate that our approach can produce improved segmentation maps with respect to previous self-supervised co-part segmentation approaches.