论文标题
nbse $ _2 $ -MOSE $ _2 $异质结构中的本地化激子
Localized Excitons in NbSe$_2$-MoSe$_2$ Heterostructures
论文作者
论文摘要
原子上薄的材料中的中性和带电的激子(TRIONS)为光子学提供了重要的功能,从超快光电探测器到高效的发光二极管和激光器。范德华(VDW)异质结构的最新研究由不同的单层材料组成,已经发现了大量的光学现象,这些光学现象主要由层间相互作用控制。在这里,我们检查了NBSE $ _2 $ - MOSE $ _2 $ vdw异质结构中的光学特性,该异质结构提供了一个重要的模型系统,用于研究金属 - 触发器接口,这是光电子中的常见元素。通过低温光致发光(PL)显微镜,我们发现了一个尖锐的发射功能L1,该功能位于NBSE $ _2 $盖住的Mose $ _2 $的NBSE $ _2 $盖的区域。在以下的能量下观察到L1,以低于常见的Mose $ _2 $激子和Trions观察到,并且表现出与激子定位一致的温度和功率依赖性PL。值得注意的是,L1不仅在不同的样本中,而且在各种制造过程中都非常健壮。我们使用第一原理计算表明,由于原始摩西$ _2 $和NBSE $ _2 $ _2 $ - MOSE $ _2 $ heterystructure之间的电子亲和力的变化,激子本地化所需的限制潜力自然源于平面频带弯曲。我们讨论了我们的研究对具有原子界面界面和可调电子结构的原子稀薄的光电设备的含义。
Neutral and charged excitons (trions) in atomically-thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly-efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures comprised of dissimilar monolayer materials have uncovered a wealth of optical phenomena that are predominantly governed by interlayer interactions. Here, we examine the optical properties in NbSe$_2$ - MoSe$_2$ vdW heterostructures, which provide an important model system to study metal-semiconductor interfaces, a common element in optoelectronics. Through low-temperature photoluminescence (PL) microscopy we discover a sharp emission feature, L1, that is localized at the NbSe$_2$-capped regions of MoSe$_2$. L1 is observed at energies below the commonly-studied MoSe$_2$ excitons and trions, and exhibits temperature- and power-dependent PL consistent with exciton localization in a confining potential. Remarkably, L1 is very robust not just in different samples, but also under a variety of fabrication processes. Using first-principles calculations we reveal that the confinement potential required for exciton localization naturally arises from the in-plane band bending due to the changes in the electron affinity between pristine MoSe$_2$ and NbSe$_2$ - MoSe$_2$ heterostructure. We discuss the implications of our studies for atomically-thin optoelectronics devices with atomically-sharp interfaces and tunable electronic structures.