论文标题
什么时候开始?在完整的轨迹,限制集和内链传递性上
When is the beginning the end? On full trajectories, limit sets and internal chain transitivity
论文作者
论文摘要
令$ f \ colon x \ to x $为紧凑的公制空间$ x $的连续地图,让$α_f$,$ω_f$和$ ICT_F $表示$α$ limit套件,$ω$ - 限制套装和非空置的内部链式式延伸式固定套件。在本文中,我们通过引入新颖的阴影变体来表征,其每个元素的每个元素均等于(可以近似)$α$ limit set和$ω$ - 限制组的相同完整轨迹的集合。我们构建了示例,突出了这些属性之间的差异。
Let $f \colon X \to X$ be a continuous map on a compact metric space $X$ and let $α_f$, $ω_f$ and $ICT_f$ denote the set of $α$-limit sets, $ω$-limit sets and nonempty closed internally chain transitive sets respectively. In this paper we characterise, by introducing novel variants of shadowing, maps for which every element of $ICT_f$ is equal to (resp. may be approximated by) the $α$-limit set and the $ω$-limit set of the same full trajectory. We construct examples highlighting the difference between these properties.