论文标题

$ψ$ - 类的交点的均匀下限

Uniform Lower Bound for Intersection Numbers of $ψ$-Classes

论文作者

Delecroix, Vincent, Goujard, Élise, Zograf, Peter, Zorich, Anton

论文摘要

我们近似交点数$ \ big \langleψ_1^{d_1} \cdotsψ_n^{d_n} \ big big \ rangle_ {g,n} $ in Deligne-Mumford的moduli space $ \ overline $ \ overline {\ mathcal m} $ cultes $ nline $ $ d_1,\ dots,d_n $中的闭合形式表达式。猜想的是,当$ g \ to \ infty $和$ n $保持界限或生长缓慢时,这些近似在$ d_i $中渐近地均匀地均匀。在本说明中,我们证明了与上述近似表达式乘以显式因子$λ(g,n)$的近似值的下限,当$ g \ to \ g \ to \ hytty $和$ d_1+\ d_1+\ d_+d_+d_ {n-2} = o(g)$时,它往往$ 1 $。

We approximate intersection numbers $\big\langle ψ_1^{d_1}\cdots ψ_n^{d_n}\big\rangle_{g,n}$ on Deligne-Mumford's moduli space $\overline{\mathcal M}_{g,n}$ of genus $g$ stable complex curves with $n$ marked points by certain closed-form expressions in $d_1,\dots,d_n$. Conjecturally, these approximations become asymptotically exact uniformly in $d_i$ when $g\to\infty$ and $n$ remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approximatingexpressions multiplied by an explicit factor $λ(g,n)$, which tends to $1$ when $g\to\infty$ and $d_1+\dots+d_{n-2}=o(g)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源