论文标题

Alladi,Andrews,Gordon Bixtions引起的某些分区和分析身份

Some partition and analytical identities arising from Alladi, Andrews, Gordon bijections

论文作者

Capparelli, Stefano, Del Fra, Alberto, Mercuri, Pietro, Vietri, Andrea

论文摘要

在1995年的一项工作中,Alladi,Andrews和Gordon对涉及某些类别的整数分区的两个卡帕雷利身份进行了概括。受到该贡献的启发,特别是关于一般环境和作者所采用的工具,我们通过确定可以通过1995年论文中描述的方法明确地将其明确地放入一对一信件中的进一步分区来获得新的分区身份。为了进一步的结果,尽管本质不同,但我们获得了罗杰斯 - 拉曼努扬类型的分析认同,涉及生成功能,对于已经在该论文中发现的一类分区身份,并推广了第一个卡帕雷利身份并将其包括在特定情况下。为了实现这一目标,我们采用了与Kanade和Russel在最近的一篇论文中相同的策略。这种方法依赖于使用锯齿状的分区,可以将其视为一种更通用的整数分区。

In a work of 1995, Alladi, Andrews, and Gordon provided a generalization of the two Capparelli identities involving certain classes of integer partitions. Inspired by that contribution, in particular as regards the general setting and the tools the authors employed, we obtain new partition identities by identifying further sets of partitions that can be explicitly put into a one-to-one correspondence by the method described in the 1995 paper. As a further result, although of a different nature, we obtain an analytical identity of Rogers-Ramanujan type, involving generating functions, for a class of partition identities already found in that paper and that generalize the first Capparelli identity and include it as a particular case. To achieve this, we apply the same strategy as Kanade and Russel did in a recent paper. This method relies on the use of jagged partitions that can be seen as a more general kind of integer partitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源