论文标题
旋转-1 Weyl点和表面弧状状态
Spin-1 Weyl Point and Surface Arc State in a Chiral Phononic Crystal
论文作者
论文摘要
Spin-1 Weyl点是由三个尺寸(3D)动量空间的单个点触摸的三个频段形成的,其中两个显示了锥状分散体,而第三个频段是平坦的。这样的三重退化点具有较高的拓扑费$ \ pm2 $ 2,可以用三频的哈密顿人来描述。我们首先提出了带有手性互层耦合的3D Lieb晶格的紧密结合模型,以形成Spin-1 Weyl点。然后,我们设计了一种手性音调晶体,该晶体带有这些自旋-1 Weyl点和特殊的直型声学费米弧。我们还在计算上证明了拓扑保护的表面状态的稳健繁殖,这些表面状态可以在不反射的情况下绕角或缺陷传播。我们的结果铺平了一种在3D结构中操纵声波的新方法,并为探索3D Spin-1 Weyl Systems中的能量传输特性提供了一个平台。
Spin-1 Weyl point is formed by three bands touching at a single point in the three dimensional (3D) momentum space, with two of which show cone-like dispersion while the third band is flat. Such a triply degenerate point carries higher topological charge $\pm2$2 and can be described by a three-band Hamiltonian. We first propose a tight-binding model of a 3D Lieb lattice with chiral interlayer coupling to form the Spin-1 Weyl point. Then we design a chiral phononic crystal that carries these spin-1 Weyl points and special straight-type acoustic Fermi arcs. We also computationally demonstrate the robust propagation of the topologically protected surface states that can travel around a corner or defect without reflection. Our results pave a new way to manipulate acoustic waves in 3D structures and provide a platform for exploring energy transport properties in 3D spin-1 Weyl systems.