论文标题
单分子连接处的可调巨型磁场
Tunable giant magnetoresistance in a single-molecule junction
论文作者
论文摘要
通过单分子连接控制电子传输对于分子电子或旋转的传输至关重要。在磁分子器件中,自旋程度可以用于此末端,因为磁离子中心的磁性特性从根本上影响通过分子的传输。在这里,我们证明可以通过改变磁场在两个分子轨道之间选择单分子装置中的电子途径,从而导致可调型各向异性磁磁性高达93%。电子途径的独特可调性是由于过渡金属中心的磁重新定向,导致分子轨道的重新杂交。我们通过昆多效应获得隧道电子通路,该效应表现为峰值或倾角形状。这些自旋晶体的能量变化非常低,少于一个毫米。大型可调型各向异性磁阻可用于控制分子旋转的电子传输。
Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics.