论文标题
composiciónderelaciones y $τ$ -factorizaciones
Composición de relaciones y $τ$-factorizaciones
论文作者
论文摘要
安德森和弗雷泽(Anderson and Frazier)开发了$τ$ factorization的$τ$ factorization的理论。该理论表征了所有已知的因法化,并为创建新的因素开辟了机会。可以通过考虑在整体域的非零非单元元素上考虑对称关系$τ$,可以将其视为对结构乘法操作的限制。 这项工作的主要目标是研究$τ$ fartorization概念,当$τ$是两个或多个关系的组成时。为了实现这一目标,可以验证和分析一个人可以从给定关系中获得的特定属性。一些最著名的研究特性包括:反射性,对称性,传递性,反对称性。还有其他与$τ$ factorization理论相关的,例如:分裂,副本和乘法关系。
The theory of $τ$-factorizations on integral domains was developed by Anderson and Frazier. This theory characterized all the known factorizations and opened the opportunity to create new ones. It can be visualized as a restriction to the structure's multiplicative operation, by considering a symmetric relation $τ$ on the set of non-zero non-unit elements of an integral domain. The main goal of this work is to study the $τ$-factorization concept, when $τ$ is a composition of two or more relations. To achieve this, the specific properties one can obtain from the given relations are verified and analyzed. Some of the studied properties which are the most known include: reflexivity, symmetry, transitivity, antisymmetry. And others related to the $τ$-factorization theory, like: divisive, associate-preserving and multiplicative relations.