论文标题
预测网络范围内的交通状态以下多个步骤:一种深度学习方法,考虑动态非本地空间相关性和非平稳的时间依赖性
Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep Learning Approach Considering Dynamic Non-Local Spatial Correlation and Non-Stationary Temporal Dependency
论文作者
论文摘要
获取有关流量网络中所有链接的未来流量流的准确信息对于流量管理和控制应用程序至关重要。这项研究研究了流量预测中的两个特定问题:(1)捕获交通链接之间的动态和非本地空间相关性,(2)(2)对时间依赖性的动力学进行建模,以确保准确的多个步骤预测。为了解决这些问题,我们提出了一个为序列模型(STSEQ2SEQ)的空间序列序列的深度学习框架。该模型基于序列(SEQ2SEQ)体系结构的序列构建,以捕获时间特征,并依赖图卷积来汇总空间信息。此外,STSEQ2SEQ基于最近的流量链接上最近流量模式的成对相似性来定义和构造模式感知的邻接矩阵(PAM),并将其集成到图形卷积操作中。它还部署了一种新颖的SEQ2SESQ体系结构,该体系结构将卷积编码器和一个经常性解码器与注意力机制进行了重复的解码器,以动态建模不同的时间步骤之间的远程依赖性。我们使用两个公共可用的大规模流量数据集进行了广泛的实验,并将STSEQ2SEQ与其他基线模型进行比较。数值结果表明,所提出的模型在各种误差措施方面实现了最先进的预测性能。消融研究验证了PAM在捕获动态非本地空间相关性以及所提出的SEQ2SEQ结构对非平稳时间依赖性建模的多个步骤预测中的有效性。此外,对PAM以及用于模型解释的注意力权重进行了定性分析。
Obtaining accurate information about future traffic flows of all links in a traffic network is of great importance for traffic management and control applications. This research studies two particular problems in traffic forecasting: (1) capture the dynamic and non-local spatial correlation between traffic links and (2) model the dynamics of temporal dependency for accurate multiple steps ahead predictions. To address these issues, we propose a deep learning framework named Spatial-Temporal Sequence to Sequence model (STSeq2Seq). This model builds on sequence to sequence (seq2seq) architecture to capture temporal feature and relies on graph convolution for aggregating spatial information. Moreover, STSeq2Seq defines and constructs pattern-aware adjacency matrices (PAMs) based on pair-wise similarity of the recent traffic patterns on traffic links and integrate it into graph convolution operation. It also deploys a novel seq2sesq architecture which couples a convolutional encoder and a recurrent decoder with attention mechanism for dynamic modeling of long-range dependence between different time steps. We conduct extensive experiments using two publicly-available large-scale traffic datasets and compare STSeq2Seq with other baseline models. The numerical results demonstrate that the proposed model achieves state-of-the-art forecasting performance in terms of various error measures. The ablation study verifies the effectiveness of PAMs in capturing dynamic non-local spatial correlation and the superiority of proposed seq2seq architecture in modeling non-stationary temporal dependency for multiple steps ahead prediction. Furthermore, qualitative analysis is conducted on PAMs as well as the attention weights for model interpretation.