论文标题

使用多分辨率和异质策略的高分辨率水文模型的校准框架

A calibration framework for high-resolution hydrological models using a multiresolution and heterogeneous strategy

论文作者

Sun, Ruochen, Hernández, Felipe, Liang, Xu, Yuan, Huiling

论文摘要

数值模型的空间和时间分辨率的增加继续推动水文科学的进步,但与此同时,它已经使现代自动校准方法的能力紧张了这些模型的现实模型参数组合的能力。本文提出了一个新的可靠且快速的自动校准框架,以解决此问题。从本质上讲,提出的框架采用了分歧和征服策略,将参数根据其敏感性或重要性将参数划分为不同分辨率的组,其中最敏感的参数优先于参数搜索领域,而最低敏感的参数则在开始时探索了最敏感的参数。接下来是一个基于优化的迭代校准过程,该校准过程由一系列子任务或运行组成。在连续运行之间,设置配置是异质的,参数搜索范围和分辨率在组之间有所不同。在每个子任务完成时,每个组中的参数范围是从先前估计的范围系统地完善的,这些范围最初基于先验信息。参数在每次运行时逐渐达到稳定的收敛。使用准合成双模型设置实验进行了将该新的校准框架与传统基于优化的方法进行比较,以校准134个参数和两个众所周知的分布式水文模型:可变渗透能力(VIC)模型和分布式水文土壤蔬菜模型(DHSVM)。结果从统计上表明,所提出的框架可以更好地缓解等于等级性问题,产生更现实的模型参数估计,并且在计算上更有效。

Increasing spatial and temporal resolution of numerical models continues to propel progress in hydrological sciences, but, at the same time, it has strained the ability of modern automatic calibration methods to produce realistic model parameter combinations for these models. This paper presents a new reliable and fast automatic calibration framework to address this issue. In essence, the proposed framework, adopting a divide and conquer strategy, first partitions the parameters into groups of different resolutions based on their sensitivity or importance, in which the most sensitive parameters are prioritized with highest resolution in parameter search space, while the least sensitive ones are explored with the coarsest resolution at beginning. This is followed by an optimization based iterative calibration procedure consisting of a series of sub-tasks or runs. Between consecutive runs, the setup configuration is heterogeneous with parameter search ranges and resolutions varying among groups. At the completion of each sub-task, the parameter ranges within each group are systematically refined from their previously estimated ranges which are initially based on a priori information. Parameters attain stable convergence progressively with each run. A comparison of this new calibration framework with a traditional optimization-based approach was performed using a quasi-synthetic double-model setup experiment to calibrate 134 parameters and two well-known distributed hydrological models: the Variable Infiltration Capacity (VIC) model and the Distributed Hydrology Soil Vegetation Model (DHSVM). The results demonstrate statistically that the proposed framework can better mitigate equifinality problem, yields more realistic model parameter estimates, and is computationally more efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源