论文标题

传感器网络中压缩传感的测量范围缺少数据

Measurement Bounds for Compressed Sensing in Sensor Networks with Missing Data

论文作者

Joseph, Geethu, Varshney, Pramod K.

论文摘要

在本文中,我们研究了在缺少数据时,通过线性传感器测量的传感器网络融合中心的稀疏矢量回收问题。在缺少数据的情况下,已知在压缩传感中采用的随机抽样方法可提供出色的重建精度。但是,当缺少数据时,与稀疏恢复相关的理论保证尚未得到很好的研究。因此,在本文中,当使用Bernoulli擦除通道建模丢失的数据时,我们将在最小测量数量上得出上限。我们分析了三个不同的网络拓扑结构,即Star,(继电器辅助)树和串行明星拓扑。我们的分析确定了使用网络参数,测量矩阵的属性和恢复算法的最小恢复量表所需的测量数量。最后,通过数值模拟,我们显示了具有不同系统参数的最小值测量数量的变化,并验证了我们的理论结果。

In this paper, we study the problem of sparse vector recovery at the fusion center of a sensor network from linear sensor measurements when there is missing data. In the presence of missing data, the random sampling approach employed in compressed sensing is known to provide excellent reconstruction accuracy. However, when there is missing data, the theoretical guarantees associated with sparse recovery have not been well studied. Therefore, in this paper, we derive an upper bound on the minimum number of measurements required to ensure faithful recovery of a sparse signal when the generation of missing data is modeled using a Bernoulli erasure channel. We analyze three different network topologies, namely, star, (relay aided-)tree, and serial-star topologies. Our analysis establishes how the minimum required number of measurements for recovery scales with the network parameters, the properties of the measurement matrix, and the recovery algorithm. Finally, through numerical simulations, we show the variation of the minimum required number of measurements with different system parameters and validate our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源