论文标题
增强噪声的空间仪式机器
Noise-enhanced spatial-photonic Ising machine
论文作者
论文摘要
Ising机器是用于最小化ISING模型的新型计算设备。这些组合优化问题对于科学和技术至关重要,但很难通过传统电子产品进行大规模解决。最近,各种基于光子学的ISING机器通过通过多个时间或空间光通道进行数据处理来证明ISING基态的超快速计算。实验噪声在许多这些设备中都是有害效应。相反,我们在这里证明,最佳噪声水平可以增强空间 - 光子伊斯丁机器在沮丧的旋转问题上的性能。通过控制检测中的错误率,我们基于空间光调制在ISING机器中引入了嘈杂的反馈机制。我们研究了具有数百个具有全面耦合的单个可压缩旋转的系统上的设备性能,我们发现在特定噪声水平上的成功概率增加了。最佳噪声振幅取决于图形和大小,因此表明有助于探索复杂能量景观并避免捕获局部最小值的其他可调参数。结果指出噪声是光学计算的资源。这个概念也包含在不同的纳米光子神经网络中,对于使用具有光学功能的并行体系结构进行大规模优化的新型硬件可能至关重要。
Ising machines are novel computing devices for the energy minimization of Ising models. These combinatorial optimization problems are of paramount importance for science and technology, but remain difficult to tackle on large scale by conventional electronics. Recently, various photonics-based Ising machines demonstrated ultra-fast computing of Ising ground state by data processing through multiple temporal or spatial optical channels. Experimental noise acts as a detrimental effect in many of these devices. On the contrary, we here demonstrate that an optimal noise level enhances the performance of spatial-photonic Ising machines on frustrated spin problems. By controlling the error rate at the detection, we introduce a noisy-feedback mechanism in an Ising machine based on spatial light modulation. We investigate the device performance on systems with hundreds of individually-addressable spins with all-to-all couplings and we found an increased success probability at a specific noise level. The optimal noise amplitude depends on graph properties and size, thus indicating an additional tunable parameter helpful in exploring complex energy landscapes and in avoiding trapping into local minima. The result points out noise as a resource for optical computing. This concept, which also holds in different nanophotonic neural networks, may be crucial in developing novel hardware with optics-enabled parallel architecture for large-scale optimizations.