论文标题
在实时混合模拟中使用机器学习方法进行计算子结构
Using Machine Learning Approach for Computational Substructure in Real-Time Hybrid Simulation
论文作者
论文摘要
混合模拟(HS)是一种广泛使用的结构测试方法,它将计算子结构与数值模型结合在一起,用于熟悉的组件和实验性子结构,用于对结构的其他部分进行物理测试。快速HS或实时HS(RTH)的一个挑战与相对复杂的结构的分析子结构有关,例如,它们可能具有大量自由度(DOFS)。这些大型DOFS计算即使具有当前所有硬件容量,也可能很难实时执行。在这项研究中,提出了一种元建模技术来代表分析子结构的结构动态行为。进行了初步研究,其中通过在里诺内华达大学使用紧凑的HS设置在地震载荷下测试了一层单层齐型支撑框架(CBF)。实验设置允许将小规模的支撑用作实验子结构与原型全尺度上的钢框架结合,用于分析子结构。评估两种不同的机器学习算法,以提供有效且有用的元模型解决方案用于分析子结构。对元模型的训练,并从原型钢框架的纯分析溶液中获得的可用数据训练。用于开发元模型的两种算法是:(1)线性回归(LR)模型和(2)基本的复发性神经网络(RNN)。首先针对结构的纯分析响应进行验证。接下来,通过使用元模型进行RTHS实验。使用LR和RNN模型的RTHS测试结果,并讨论了这些模型的优点和缺点。
Hybrid simulation (HS) is a widely used structural testing method that combines a computational substructure with a numerical model for well-understood components and an experimental substructure for other parts of the structure that are physically tested. One challenge for fast HS or real-time HS (RTHS) is associated with the analytical substructures of relatively complex structures, which could have large number of degrees of freedoms (DOFs), for instance. These large DOFs computations could be hard to perform in real-time, even with the all current hardware capacities. In this study, a metamodeling technique is proposed to represent the structural dynamic behavior of the analytical substructure. A preliminary study is conducted where a one-bay one-story concentrically braced frame (CBF) is tested under earthquake loading by using a compact HS setup at the University of Nevada, Reno. The experimental setup allows for using a small-scale brace as the experimental substructure combined with a steel frame at the prototype full-scale for the analytical substructure. Two different machine learning algorithms are evaluated to provide a valid and useful metamodeling solution for analytical substructure. The metamodels are trained with the available data that is obtained from the pure analytical solution of the prototype steel frame. The two algorithms used for developing the metamodels are: (1) linear regression (LR) model, and (2) basic recurrent neural network (RNN). The metamodels are first validated against the pure analytical response of the structure. Next, RTHS experiments are conducted by using metamodels. RTHS test results using both LR and RNN models are evaluated, and the advantages and disadvantages of these models are discussed.