论文标题

与摩擦的简单热力学系统的接触几何形状

Contact geometry for simple thermodynamical systems with friction

论文作者

Simoes, Alexandre Anahory, de León, Manuel, Valcázar, Manuel Lainz, de Diego, David Martín

论文摘要

使用触点几何形状,我们给出了一类简单但重要的热力学系统的新表征,该系统自然满足了热力学的第一定律(总能量保存)和第二定律(熵的增加)。我们完全阐明了其定性动力学,潜在的几何结构,并展示了如何使用离散梯度方法。

Using contact geometry we give a new characterization of a simple but important class of thermodynamical systems which naturally satisfy the first law of thermodynamics (total energy preservation) and the second law (increase of entropy). We completely clarify its qualitative dynamics, the underlying geometrical structures and we show how to use discrete gradient methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源