论文标题
第二种类型的高阶通用几何多项式和高阶通用欧拉多项式
A Second Type Of Higher Order Generalised Geometric Polynomials and Higher Order Generalised Euler Polynomials
论文作者
论文摘要
在这项研究中,我们引入了第二种高阶通用几何多项式。我们通过检查广义的stirl数字$ s(n; k;α;β;γ)$ [Hsu&Shiue,1998]来实现这一目标。我们研究其数量理论特性,渐近特性,并使用禁止优先排列的概念研究其组合特性。我们还提出了经典欧拉多项式的概括,并展示了这些Euler多项式如何与第二种类型的高阶通用几何多项式相关。
In this study we introduce a second type of higher order generalised geometric polynomials. This we achieve by examining the generalised stirling numbers $S(n; k;α;β;γ)$ [Hsu & Shiue,1998] for some negative arguments. We study their number theoretic properties, asymptotic properties, and study their combinatorial properties using the notion of barred preferential arrangements. We also proposed a generalisation of the classical Euler polynomials and show how these Euler polynomials are related to the second type of higher order generalised geometric polynomials.