论文标题
赌徒的毁灭问题和量子测量
The Gambler's Ruin Problem and Quantum Measurement
论文作者
论文摘要
与宏观环境相互作用的单个显微镜或介绍非量子系统的动力学通常是随机的。以同样的方式,与宏观环境相互作用的单个量子系统的减少密度运算符是先验的随机变量,而DeCherence仅描述了该变量的平均动力学,而不是其波动。结果表明,可以将一般公正的量子测量值重新归类为赌徒的毁灭问题,而游戏是马丁纳尔。然后,Born的统治似乎是可选的停止Martingales定理的直接结果。明确的计算将在一个特定的简单示例上详细研究。
The dynamics of a single microscopic or mesoscopic non quantum system interacting with a macroscopic environment is generally stochastic. In the same way, the reduced density operator of a single quantum system interacting with a macroscopic environment is a priori a stochastic variable, and decoherence describes only the average dynamics of this variable, not its fluctuations. It is shown that a general unbiased quantum measurement can be reformulated as a gambler's ruin problem where the game is a martingale. Born's rule then appears as a direct consequence of the optional stopping theorem for martingales. Explicit computations are worked out in detail on a specific simple example.