论文标题
通过辅助场量蒙特卡洛揭示氢链的有限温度物理学
Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo
论文作者
论文摘要
准确预测逼真的量子固体的有限温度特性对于揭示具有新型特性的新阶段和工程材料至关重要。但是,仍然很少有能够从第一原理阐明固体的有限温度物理的多体技术。在这项工作中,我们通过概括了我们以前的完全有限温度辅助场量子蒙特卡洛(FT-AFQMC)方法来开发这种技术,以建模周期性固体并使用它来发现周期性氢链的有限温度物理学。基于我们对这些链的多体热力学量和相关功能的计算,我们概述了它们的金属绝缘体和磁性排序作为H-H键距离和温度的函数。在接近基态的低温下,我们观察到金属 - 绝缘体和铁磁抗磁磁性交叉的键长在0.5至0.75Å之间。然后,我们演示了这种低温有序如何随着较高温度下的磁顺序降低而变成金属相。通过比较我们观察到的功能与先前在有限温度和基态氢链中的一维,半填充的哈币模型中看到的功能,我们很有趣,我们第一次确定了Pomeranchuk效应中Pomeranchuk效应的签名,并表明旋转和电荷激发通常在Hubbard模型中通常在不同的温度下出现在不同的温度下。除了定性地揭示氢链的多体相行为外,我们的努力还阐明了进一步的理论发展,这些发展是为了构建对物理学家长期兴趣的更复杂过渡金属,兰烷基和静脉固体的相图。
The ability to accurately predict the finite temperature properties of realistic quantum solids is central to uncovering new phases and engineering materials with novel properties. Nonetheless, there remain comparatively few many-body techniques capable of elucidating the finite temperature physics of solids from first principles. In this work, we take a significant step towards developing such a technique by generalizing our previous, fully ab initio finite temperature Auxiliary Field Quantum Monte Carlo (FT-AFQMC) method to model periodic solids and employing it to uncover the finite temperature physics of periodic hydrogen chains. Based upon our calculations of these chains' many-body thermodynamic quantities and correlation functions, we outline their metal-insulator and magnetic ordering as a function of both H-H bond distance and temperature. At low temperatures approaching the ground state, we observe both metal-insulator and ferromagnetic-antiferromagnetic crossovers at bond lengths between 0.5 and 0.75 Å. We then demonstrate how this low-temperature ordering evolves into a metallic phase with decreasing magnetic order at higher temperatures. By comparing the features we observe to those previously seen in one-dimensional, half-filled Hubbard models at finite temperature and in ground state hydrogen chains, interestingly, we identify signatures of the Pomeranchuk effect in hydrogen chains for the first time and show that spin and charge excitations that typically arise at distinct temperatures in the Hubbard model are indistinguishably coupled in these systems. Beyond qualitatively revealing the many-body phase behavior of hydrogen chains, our efforts shed light on the further theoretical developments that will be required to construct the phase diagrams of the more complex transition metal, lanthanide, and actinide solids of longstanding interest to physicists.