论文标题
平面图中的最大诱导$ C_5 $数量
The maximum number of induced $C_5$'s in a planar graph
论文作者
论文摘要
在$ n $顶点的图中找到最大数量的长度$ k $的诱导循环一直是极端图理论中最有趣的开放问题之一。最近,Balogh,Hu,Lidický和Pfender回答了$ k = 5 $的情况。在本文中,我们确切地确定了所有足够大的$ n $,最多的$ 5 $ cycles数量是$ n $ vertex平面图可以包含的。
Finding the maximum number of induced cycles of length $k$ in a graph on $n$ vertices has been one of the most intriguing open problems of Extremal Graph Theory. Recently Balogh, Hu, Lidický and Pfender answered the question in the case $k=5$. In this paper we determine precisely, for all sufficiently large $n$, the maximum number of induced $5$-cycles that an $n$-vertex planar graph can contain.