论文标题
在圆环和广义的曲曲公配方上的绝热启发式原理
Adiabatic Heuristic Principle on a Torus and Generalized Streda Formula
论文作者
论文摘要
尽管分数量子霍尔状态的绝热启发式论点已经成功,但由于编织组的代数约束在圆环上的代数约束,因此严格禁止对Anyons的通量/统计数据进行连续修改。我们从数字上表明,即使不能连续修改哈密顿人,Anyons的绝热启发式原则仍然有效。基态多重组的Chern数量是绝热的不变性,而拓扑堕落的数量则疯狂。提出了一个广义的Streda公式,该公式解释了堕落模式。还建议与Anyon超导相关的Nambu-Goldston模式数字。
Although the adiabatic heuristic argument of the fractional quantum Hall states has been successful, continuous modification of the flux/statistics of anyons is strictly prohibited due to algebraic constrains of the braid group on a torus. We have numerically shown that the adiabatic heuristic principle for anyons is still valid even though the Hamiltonians cannot be modified continuously. The Chern number of the ground state multiplet is the adiabatic invariant, while the number of the topological degeneracy behaves wildly. A generalized Streda formula is proposed that explains the degeneracy pattern. Nambu-Goldston modes associated with the anyon superconductivity are also suggested numerically.