论文标题

Gopala-Hemachandra代码重新审视

Gopala-Hemachandra codes revisited

论文作者

Childers, L., Gopalakrishnan, K.

论文摘要

Gopala-Hemachandra代码是斐波那契通用代码的变体,并在加密和数据压缩中具有应用。我们表明,$ gh_ {a}(n)$代码始终存在$ a = -2,-3 $和$ -4 $的任何整数$ n \ geq 1 $,因此是通用代码。我们开发了两种新算法来确定是否存在针对给定参数$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $的GH代码。在2010年,巴苏(Basu)和普拉萨德(Prasad)在实验上表明,在$ 1 \ leq n \ leq 100 $和$ 1 \ leq k \ leq 16 $中,最多有$ k $连续的整数,其中$ gh _ { - (4+k)}(4+k)}(n)$不存在。我们将他们的数值结果变成数学定理,并表明它在它们考虑的有限范围之外是有效的。

Gopala-Hemachandra codes are a variation of the Fibonacci universal code and have applications in cryptography and data compression. We show that $GH_{a}(n)$ codes always exist for $a=-2,-3$ and $-4$ for any integer $n \geq 1$ and hence are universal codes. We develop two new algorithms to determine whether a GH code exists for a given set of parameters $a$ and $n$. In 2010, Basu and Prasad showed experimentally that in the range $1 \leq n \leq 100$ and $1 \leq k \leq 16$, there are at most $k$ consecutive integers for which $GH_{-(4+k)}(n)$ does not exist. We turn their numerical result into a mathematical theorem and show that it is valid well beyond the limited range considered by them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源