论文标题

选择性控制的磁性微型机器人具有相反的螺旋

Selectively Controlled Magnetic Microrobots with Opposing Helices

论文作者

Giltinan, Joshua, Katsamba, Panayiota, Wang, Wendong, Lauga, Eric, Sitti, Metin

论文摘要

通过液体培养基游泳的磁性微型机器人对微创医疗程序,生物工程和制造业感兴趣。许多设想的应用程序(例如微观计算和有针对性的货物输送)都需要对多个微型机器人进行使用和充分控制,这将提高程序的速度,鲁棒性和效率。尽管已经提出了涉及多种几何形状,磁性和表面化学的各种方法来增强独立的控制,但主要的挑战是所有微粘剂之间的运动仍然通过磁场的整体控制信号耦合。 Katsamba和Lauga提出了透射微型机器人,这是一种具有相反手的磁化螺旋的理论设计。可以调整螺旋之间的竞争,以产生固有的非线性,每个设备只能在给定的频率频段内起作用。这允许通过改变旋转磁场的频率选择性控制单个微型机器人。在这里,我们介绍了由独立驱动的磁性螺旋组成的经疗法的实验实现和表征。我们显示了一个游泳微型运动员,该游泳微型运动能够产生可忽略的净运动,直到达到临界频率,并且微电位会随着旋转磁场的频率而改变其翻译方向。这项工作展示了朝着完全解耦和可寻址的游泳磁性微型机器人迈出的关键步骤。

Magnetic microrobots that swim through liquid media are of interest for minimally invasive medical procedures, bioengineering, and manufacturing. Many of the envisaged applications, such as micromanipulation and targeted cargo delivery, necessitate the use and adequate control of multiple microrobots, which will increase the velocity, robustness, and efficacy of a procedure. While various methods involving heterogeneous geometries, magnetic properties, and surface chemistries have been proposed to enhance independent control, the main challenge has been that the motion between all microwsimmers remains coupled through the global control signal of the magnetic field. Katsamba and Lauga proposed transchiral microrobots, a theoretical design with magnetized spirals of opposite handedness. The competition between the spirals can be tuned to give an intrinsic nonlinearity that each device can function only within a given band of frequencies. This allows individual microrobots to be selectively controlled by varying the frequency of the rotating magnetic field. Here we present the experimental realization and characterization of transchiral micromotors composed of independently driven magnetic helices. We show a swimming micromotor that yields negligible net motion until a critical frequency is reached and a micromotor that changes its translation direction as a function of the frequency of the rotating magnetic field. This work demonstrates a crucial step towards completely decoupled and addressable swimming magnetic microrobots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源