论文标题
星星和梳子IV的二元定理:不合格的星星
Duality theorems for stars and combs IV: Undominating stars
论文作者
论文摘要
在一系列四篇论文中,我们确定了其存在是偶性的结构,从互补的意义上讲,对恒星或梳子的存在。在我们系列的第一篇论文中,我们确定了与任意恒星或梳子互补的结构。恒星和梳子可以呈积极和负面的结合。在我们系列的第二篇和第三篇论文中,我们为除一种可能的组合之一提供了双重定理。 在我们系列的第四篇也是最后一篇论文中,我们通过为失踪作品呈现二元定理来找到恒星,梳子及其组合的互补结构的问题:对于不优势的恒星。我们的二元定理是根据最终编译的子图,树分解和缠结分离器的分离器来表达的。
In a series of four papers we determine structures whose existence is dual, in the sense of complementary, to the existence of stars or combs. In the first paper of our series we determined structures that are complementary to arbitrary stars or combs. Stars and combs can be combined, positively as well as negatively. In the second and third paper of our series we provided duality theorems for all but one of the possible combinations. In this fourth and final paper of our series, we complete our solution to the problem of finding complementary structures for stars, combs, and their combinations, by presenting duality theorems for the missing piece: for undominating stars. Our duality theorems are phrased in terms of end-compactified subgraphs, tree-decompositions and tangle-distinguishing separators.