论文标题

从傅立叶到库普曼:长期时间序列预测的光谱方法

From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction

论文作者

Lange, Henning, Brunton, Steven L., Kutz, Nathan

论文摘要

我们提出了光谱方法,用于长期预测由线性和非线性准周期动力学系统引起的时间信号。对于线性信号,我们引入了一种与傅立叶变换具有相似性的算法,但不依赖于周期性假设,从而允许给定潜在的任意采样间隔进行预测。然后,我们通过利用Koopman理论来扩展该算法以处理非线性。所得算法在非线性,数据依赖性基础上执行光谱分解。两种算法的优化目标都是高度非凸。但是,在频域中表达目标使我们能够以可扩展和有效的方式计算误差表面的全局最佳,部分地通过利用快速傅立叶变换的计算属性。由于它们与贝叶斯光谱分析密切相关,因此不确定性定量指标是光谱预测方法的自然副产品。我们在一系列合成实验以及现实世界大能系统和流体流的背景下,对其他领先的预测方法进行了广泛的基准测试。

We propose spectral methods for long-term forecasting of temporal signals stemming from linear and nonlinear quasi-periodic dynamical systems. For linear signals, we introduce an algorithm with similarities to the Fourier transform but which does not rely on periodicity assumptions, allowing for forecasting given potentially arbitrary sampling intervals. We then extend this algorithm to handle nonlinearities by leveraging Koopman theory. The resulting algorithm performs a spectral decomposition in a nonlinear, data-dependent basis. The optimization objective for both algorithms is highly non-convex. However, expressing the objective in the frequency domain allows us to compute global optima of the error surface in a scalable and efficient manner, partially by exploiting the computational properties of the Fast Fourier Transform. Because of their close relation to Bayesian Spectral Analysis, uncertainty quantification metrics are a natural byproduct of the spectral forecasting methods. We extensively benchmark these algorithms against other leading forecasting methods on a range of synthetic experiments as well as in the context of real-world power systems and fluid flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源