论文标题
分散媒体中麦克斯韦方程的卷积正交方法
A convolution quadrature method for Maxwell's equations in dispersive media
论文作者
论文摘要
我们研究了分散介质中麦克斯韦方程的系统数值近似。考虑了两种离散策略,一种基于传统的跨越时间整合方法,另一个基于卷积正交。事实证明,这两个方案是等效的,并保留了问题的基本能量散文结构。但是,第二种方法独立于内部状态的数量,并允许处理相当通用的分散材料。使用快速卷积正交的想法,可以有效地实现该方法。
We study the systematic numerical approximation of Maxwell's equations in dispersive media. Two discretization strategies are considered, one based on a traditional leapfrog time integration method and the other based on convolution quadrature. The two schemes are proven to be equivalent and to preserve the underlying energy-dissipation structure of the problem. The second approach, however, is independent of the number of internal states and allows to handle rather general dispersive materials. Using ideas of fast-and-oblivious convolution quadrature, the method can be implemented efficiently.