论文标题

花瓣预测,结着色和决定因素

Petal Projections, Knot Colorings and Determinants

论文作者

Henrich, Allison, Truax, Robin

论文摘要

überCrossing图是一个结图,只有一个交叉,可能涉及两个以上的结。这样一个没有任何嵌套环的图称为花瓣投影。每个结都有一个花瓣投影,可以使用代表链高度的置换来恢复结。使用此置换,我们提供了一种算法,该算法确定$ p $ - 可颜色性和从其花瓣预测中的结决定因素。特别是,我们计算出所有Prime结的决定因素,其交叉数量从其花瓣排列中少于$ 10 $。

An übercrossing diagram is a knot diagram with only one crossing that may involve more than two strands of the knot. Such a diagram without any nested loops is called a petal projection. Every knot has a petal projection from which the knot can be recovered using a permutation that represents strand heights. Using this permutation, we give an algorithm that determines the $p$-colorability and the determinants of knots from their petal projections. In particular, we compute the determinants of all prime knots with crossing number less than $10$ from their petal permutations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源