论文标题
K3表面上的高几何组和动力学
Hypergeometric Groups and Dynamics on K3 Surfaces
论文作者
论文摘要
超几何组是一个基质组,该基质组在广义超几何差分方程的单型组上建模。本文通过表明某种类别的高几何组和相关的晶格导致了许多正熵的K3表面自动形态,尤其是与Siegel磁盘的这种自动形态的相关晶格,从而提出了高几何组理论与K3表面上的动力学之间的富有成效的相互作用。
A hypergeometric group is a matrix group modeled on the monodromy group of a generalized hypergeometric differential equation. This article presents a fruitful interaction between the theory of hypergeometric groups and dynamics on K3 surfaces by showing that a certain class of hypergeometric groups and related lattices lead to a lot of K3 surface automorphisms of positive entropy, especially such automorphisms with Siegel disks.