论文标题

汇总数据的推断:最佳传输方法

Inference with Aggregate Data: An Optimal Transport Approach

论文作者

Singh, Rahul, Haasler, Isabel, Zhang, Qinsheng, Karlsson, Johan, Chen, Yongxin

论文摘要

我们考虑了与大量个体生成的汇总数据相比,推理(过滤)问题。我们在树结构图上提出了一种具有多项式计算复杂性以及全局收敛保证的树结构图上的新有效的信念传播类型算法。这与以前的方法形成鲜明对比的是,随着人口的增长或不能保证收敛性,表现出过度复杂性。我们的方法基于最佳运输,或更具体地说,是多核心最佳运输理论。特别是,我们考虑了汇总观测值的推论问题,可以看作是一个结构化的多 - 边界最佳运输问题,其中成本函数根据基础图分解。因此,可以将著名的sndhorn/迭代缩放比例算法与标准信念传播算法一起利用,以建立一个有效的推理方案,我们称之为Sinkhorn信仰传播(SBP)。由于其在控制和估计中的重要性,我们进一步将SBP算法专门针对与隐藏的马尔可夫模型相关的病例。我们证明了我们的算法在应用程序上的应用中的性能,例如从总观测中推断人口流量。我们还表明,在特殊情况下,观察结果是由单个个体产生的,我们的算法自然会减少标准信念传播算法。

We consider inference (filtering) problems over probabilistic graphical models with aggregate data generated by a large population of individuals. We propose a new efficient belief propagation type algorithm over tree-structured graphs with polynomial computational complexity as well as a global convergence guarantee. This is in contrast to previous methods that either exhibit prohibitive complexity as the population grows or do not guarantee convergence. Our method is based on optimal transport, or more specifically, multi-marginal optimal transport theory. In particular, we consider an inference problem with aggregate observations, that can be seen as a structured multi-marginal optimal transport problem where the cost function decomposes according to the underlying graph. Consequently, the celebrated Sinkhorn/iterative scaling algorithm for multi-marginal optimal transport can be leveraged together with the standard belief propagation algorithm to establish an efficient inference scheme which we call Sinkhorn belief propagation (SBP). We further specialize the SBP algorithm to cases associated with hidden Markov models due to their significance in control and estimation. We demonstrate the performance of our algorithm on applications such as inferring population flow from aggregate observations. We also show that in the special case where the observations are generated by a single individual, our algorithm naturally reduces to the standard belief propagation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源