论文标题

学习甲骨文的关注高保真面孔完成

Learning Oracle Attention for High-fidelity Face Completion

论文作者

Zhou, Tong, Ding, Changxing, Lin, Shaowen, Wang, Xinchao, Tao, Dacheng

论文摘要

由于涉及丰富而微妙的面部纹理,高保真的面部完成是一项艰巨的任务。使它更加复杂的是不同面部成分之间的相关性,例如,两只眼睛之间的质地和结构对称性。尽管最近的著作采用了注意面部元素之间的情境关系的注意机制,但他们在很大程度上忽略了注意力评分的灾难性影响。此外,他们无法充分注意关键面部成分,其完成结果很大程度上决定了面部图像的真实性。因此,在本文中,我们设计了一个基于U-NET结构的面部完成的综合框架。具体而言,我们提出了一个双重空间注意模块,以有效地学习多个尺度的面部纹理之间的相关性。此外,我们向注意模块提供甲骨文监督信号,以确保获得的注意力得分合理。此外,我们将面部成分的位置视为先验知识,并将多种歧视者强加于这些区域,并在这些区域中大大促进了面部成分的忠诚度。在包括Celeba-HQ和Flickr-Faces-HQ在内的两个高分辨率面部数据集上进行的广泛实验表明,所提出的方法优于大幅度的最先进方法。

High-fidelity face completion is a challenging task due to the rich and subtle facial textures involved. What makes it more complicated is the correlations between different facial components, for example, the symmetry in texture and structure between both eyes. While recent works adopted the attention mechanism to learn the contextual relations among elements of the face, they have largely overlooked the disastrous impacts of inaccurate attention scores; in addition, they fail to pay sufficient attention to key facial components, the completion results of which largely determine the authenticity of a face image. Accordingly, in this paper, we design a comprehensive framework for face completion based on the U-Net structure. Specifically, we propose a dual spatial attention module to efficiently learn the correlations between facial textures at multiple scales; moreover, we provide an oracle supervision signal to the attention module to ensure that the obtained attention scores are reasonable. Furthermore, we take the location of the facial components as prior knowledge and impose a multi-discriminator on these regions, with which the fidelity of facial components is significantly promoted. Extensive experiments on two high-resolution face datasets including CelebA-HQ and Flickr-Faces-HQ demonstrate that the proposed approach outperforms state-of-the-art methods by large margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源