论文标题

对于一般边界条件的高维空间 - 分数反应扩散方程的快速准确的高级方法

Fast and accurate high-order method for high dimensional space-fractional reaction-diffusion equation with general boundary conditions

论文作者

Mustafa, Almushaira, Bhatt, Harish

论文摘要

为了实现有效,准确的长时间整合,我们提出了一种快速,准确稳定的高阶数值方法,用于求解空间空间反应 - 扩散方程。所提出的方法在本质上是显式的,并利用了具有基于FFT的实现的空间中的四阶有限差异方案和矩阵转移技术(MTT)。时间积分是通过准确的四阶修改指数时间差异runge-kutta方案完成的。线性稳定性分析和各种数值实验,包括二维(2D)Fitzhugh-Nagumo,Gierer-Meinhardt,Gray-Scott和三维(3D)Schnakenberg模型,以证明提议方法的准确性,效率和稳定性。

To achieve efficient and accurate long-time integration, we propose a fast, accurate, and stable high-order numerical method for solving fractional-in-space reaction-diffusion equations. The proposed method is explicit in nature and utilizes the fourth-order compact finite difference scheme and matrix transfer technique (MTT) in space with FFT-based implementation. Time integration is done through the accurate fourth-order modified exponential time differencing Runge-Kutta scheme. The linear stability analysis and various numerical experiments including two-dimensional (2D) Fitzhugh-Nagumo, Gierer-Meinhardt, Gray-Scott and three-dimensional (3D) Schnakenberg models are presented to demonstrate the accuracy, efficiency, and stability of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源