论文标题

彩虹断开图的界限

Bounds for the rainbow disconnection number of graphs

论文作者

Bai, Xuqing, Huang, Zhong, Li, Xueliang

论文摘要

如果边缘切割中没有两个边缘的颜色相同,则边缘颜色连接的图形的边缘切割$ r $称为彩虹切割。如果对于图形的任何两个不同的顶点$ u $和$ v $,则将彩虹脱离彩虹的图形,则存在$ u $ -V $ -V $ -RAINBOW-CUT将它们分开。对于连接的图形$ g $,由RD $(g)$表示的$ G $的彩虹断开数字定义为为了使$ G $ rainbow断开连接所需的最小颜色。 在本文中,我们首先给出了RD $(G)$的一些紧密上限,此外,我们完全表征了符合我们早期获得的Nordhaus-Gaddum类型结果的图形。其次,我们提出了一个猜想,即$λ^+(g)\ leq \ textnormal {rd}(g)\leqλ^+(g)+1 $,其中$λ^+(g)$是上边缘连接性,并证明了许多图形的猜测,以支持它。最后,我们给出了图$ g $的rd $(g)$与$ g $ of line gragh $ l(g)$ of $ g $的Rainbow Vertex-Disconnnection rvd $(l(g))$之间的关系。

An edge-cut $R$ of an edge-colored connected graph is called a rainbow-cut if no two edges in the edge-cut are colored the same. An edge-colored graph is rainbow disconnected if for any two distinct vertices $u$ and $v$ of the graph, there exists a $u$-$v$-rainbow-cut separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by rd$(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. In this paper, we first give some tight upper bounds for rd$(G)$, and moreover, we completely characterize the graphs which meet the upper bound of the Nordhaus-Gaddum type results obtained early by us. Secondly, we propose a conjecture that $λ^+(G)\leq \textnormal{rd}(G)\leq λ^+(G)+1$, where $λ^+(G)$ is the upper edge-connectivity, and prove the conjecture for many classes of graphs, to support it. Finally, we give the relationship between rd$(G)$ of a graph $G$ and the rainbow vertex-disconnection number rvd$(L(G))$ of the line graph $L(G)$ of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源