论文标题

启用MMWave的V2X缓存的分析框架

An Analytical Framework for mmWave-Enabled V2X Caching

论文作者

Fattahi-Bafghi, Saeede, Zeinalpour-Yazdi, Zolfa, Asadi, Arash

论文摘要

自动驾驶汽车将在很大程度上依靠车辆到设施(V2X)通信,以获取导航和道路安全目的所需的大量信息。这可以通过:(i)利用毫米波(mmwave)频率达到多Gbps数据速率,以及(ii)利用车辆内容物的时间和空间相关性,以通过缓存从基础设施中卸载一部分流量。在MMWave定向波束成形,高车辆迁移率,通道波动和不同的缓存策略下表征这种系统是一项复杂的任务。在本文中,我们提出了MMWave V2X网络中缓存的第一个随机几何框架,该框架通过严格的蒙特卡洛模拟进行了验证。除了在随机几何模型中考虑的常见参数外,我们的派生还考虑了缓存以及车辆的速度和轨迹。此外,我们的评估提供了有趣的设计见解:(i)更高的基站/车辆密度不一定会改善缓存性能; (ii)尽管使用较窄的光束会导致更高的SINR,但也降低了连接性的概率; (iii)V2X缓存可以是补偿某些不需要的MMWave通道特征的廉价方式。

Autonomous vehicles will rely heavily on vehicle-to-everything (V2X) communications to obtain a large amount of information required for navigation and road safety purposes. This can be achieved through: (i) leveraging millimeter-wave (mmWave) frequencies to achieve multi- Gbps data rates, and (ii) exploiting the temporal and spatial correlation of vehicular contents to offload a portion of the traffic from the infrastructure via caching. Characterizing such a system under mmWave directional beamforming, high vehicular mobility, channel fluctuations, and different caching strategies is a complex task. In this article, we propose the first stochastic geometry framework for caching in mmWave V2X networks, which is validated via rigorous Monte Carlo simulation. In addition to common parameters considered in stochastic geometry models, our derivations account for caching as well as the speed and the trajectory of the vehicles. Furthermore, our evaluations provide interesting design insights: (i) higher base station/vehicle densities does not necessarily improve caching performance; (ii) although using a narrower beam leads to a higher SINR, it also reduces the connectivity probability; and (iii) V2X caching can be an inexpensive way of compensating some of the unwanted mmWave channel characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源