论文标题

优化协调的车辆排:一种基于随机动态编程的分析方法

Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

论文作者

Xiong, Xi, Sha, Junyi, Jin, Li

论文摘要

连接和自动驾驶汽车(CAV)可以提高交通和燃油效率。但是,可扩展的排队操作需要连接级的协调,这尚未得到很好的研究。在本文中,我们研究了高速公路交界处的车辆排协调。我们考虑一个环境,骑士会根据一般续签过程随机到达公路交界处。当骑士接近交界处时,系统操作员会根据骑士和排的位置和速度确定骑士是否会合并到前面的排中。我们制定了马尔可夫决策过程,以最大程度地减少折扣累计旅行成本,即燃油消耗加上旅行延迟,在无限的时间范围内。我们表明,最佳策略是基于阈值的:当且仅当CAV和排的预测到达时的差异时,CAV才会与排合并。我们还提出了两种现成的实施算法来得出最佳策略。与经典价值迭代算法进行比较意味着,我们的方法明确纳入了最佳策略的特征,在计算方面效率更高。重要的是,我们表明,可以通过求解一个积分方程系统来获得Poisson到达中的最佳政策。我们还使用真实的流量数据还通过实时策略(RTS)来验证我们的结果。模拟结果表明,与常规方法相比,所提出的方法可以产生更好的性能。

Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源