论文标题

通过Pitman的转换,具有随机初始条件的多色盒球系统的动力学

Dynamics of the multicolor box-ball system with random initial conditions via Pitman's transformation

论文作者

Kondo, Kazuki

论文摘要

Box-Ball System(BBS)是Takahashi和Satsuma在1990年代引入的蜂窝自动机。该系统是KDV方程的离散对应物,并且表现出孤子行为。最近,通过将粒子构型编码为Z上的某个离散路径并根据路径的范围定义BBS的动态,从而研究了BBS从随机的两侧无限粒子构型开始。在本文中,我们将先前研究的一些结果扩展到了\ k {appa} - 彩色球(粒子)的BBS的概括,称为多色BBS。我们首先将\ k {appa} - 彩色粒子配置的编码引入\ k {appa} - 二维欧几里得空间中的离散路径。然后,我们证明了多色BBS的动力学是由Pitman转换和置换操作员的组成表示的。应用此表达式,我们表征了整个动力学始终定义和可逆的配置集。然后,我们给出了一类简单的随机初始条件,这些条件在多色BBS的动力学下是在分布中不变的。最后,我们介绍了多色BB的连续版本,该版本定义为R \ k {appa} - 二维欧几里得空间的连续路径,并证明\ k {appa} -dimensional brownian运动具有适当的漂移是在不断变化的多体色bbs bbs的持续动态下不变的。

The Box-Ball System (BBS) is a cellular automaton introduced by Takahashi and Satsuma in the 1990s. The system is a discrete counterpart of the KdV equation and exhibits solitonic behavior. Recently, the BBS started from a random two-sided infinite particle configuration has been studied, by encoding the particle configuration to a certain discrete path on Z and defining the dynamic of the BBS in terms of the path. In this paper, we extend some results of the previous study in this direction to a generalization of the BBS with \k{appa}-color balls (particles), called the multicolor BBS. We first introduce an encoding of the \k{appa}-color particles configuration to a discrete path in \k{appa}-dimensional Euclidean space. Then we show that the dynamics of the multicolor BBS is expressed by the composition of the Pitman's transformation and a permutation operator. Applying this expression, we characterize the set of configurations for which the dynamics are well-defined and reversible for all times. Then, we give a simple class of random initial conditions which are invariant in distribution under the dynamics of the multicolor BBS. Finally, we introduce a continuous version of the multicolor BBS, which is defined for continuous paths on R in \k{appa}-dimensional Euclidean space, and show that \k{appa}-dimensional Brownian motion with a proper drift is invariant under the dynamics of the continuous version of the multicolor BBS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源