论文标题

1-D量子谐波振荡器方程的可降低性,并具有无限的振动扰动

Reducibility of 1-d Quantum Harmonic Oscillator Equation with Unbounded Oscillation Perturbations

论文作者

Liang, Zhenguo, Luo, Jiawen

论文摘要

我们根据振荡积分和兰格的转折点理论建立了一个新的估计亲戚。从中我们表明了方程$$ i \ partial_t u = - \ partial_x^2 u+x^2 u+x^2 u+ε\ langle x \ rangle^μW(νx,ωt)u,\ quad u = u = u = u(t,x),〜x \ in \ mathbb r,〜0 \ 0 \ 0 H^1(\ Mathbb r)$ to自主系统对于频率向量$ω$和$ν$的大多数值,其中$ w(φ,θ)$是$ \ Mathbb t^d \ times \ Mathbb t^n $到$ \ $ \ MATHBB R $的平滑地图。

We build a new estimate relative with Hermite functions based upon oscillatory integrals and Langer's turning point theory. From it we show that the equation $$ i \partial_t u =-\partial_x^2 u+x^2 u+ε\langle x\rangle^μ W(νx,ωt)u,\quad u=u(t,x),~x\in\mathbb R,~ 0\leq μ<\frac13,$$ can be reduced in $\mathcal H^1(\mathbb R)$ to an autonomous system for most values of the frequency vector $ω$ and $ν$, where $W(φ, θ)$ is a smooth map from $ \mathbb T^d\times \mathbb T^n$ to $\mathbb R$ and odd in $φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源