论文标题
在半填充的纳米管点中,野外诱导的SU(4)到SU(2)近距跨界:光谱和有限温度的特性
Field-induced SU(4) to SU(2) Kondo crossover in a half-filling nanotube dot: spectral and finite-temperature properties
论文作者
论文摘要
我们使用Wilson数值重新归一化组(NRG)研究了北极量(CNT)量子点中近多效应的有限温度特性。在没有磁场的情况下,由自旋和轨道自由度组成的CNT的四个变性能级产生了SU(4)近藤效应。我们重新审视SU(4)电导的通用缩放行为,以在较宽的温度范围内进行四分之一和半填充。我们发现,可以通过扩展的费米 - 液体理论清楚地解释了低温$ t $的普遍缩放行为的填充依赖性。该理论澄清说,$ t {2} $导电系数在四分之一填充时变为零,而半填充的系数是有限的。我们还研究了从SU(4)到SU(2)的近距离状态的野外诱导的交叉,在半填充的CNT点处观察到。跨界车是由旋转和轨道Zeeman分裂的匹配引起的,即使在磁场$ b $中,它们在费米级别的四个级别都锁定了两个水平。我们发现电导率显示$μ_{b} b <k_ {b} t_ {k}^{k}^{\ mathrm {su(su(4)}} $的SU($ 4 $)缩放行为k_ {b} t_ {k}^{\ mathrm {su(4)}} $,其中$ t_ {k}^{\ mathrm {su(4)}} $是su($ 4 $)kondo温度。为了澄清激发态如何沿SU(4)到SU(2)跨界的演变,我们还计算了光谱函数。结果表明,锁定在费米水平的两个状态的近藤共振宽度随着场地的增加而变得更加尖锐。其他两个级别的频谱峰从费米级别与原子极限峰合并为$μ_{b} b \ gtrsim k_ {b} t_ {k} {k}^{\ mathrm {su(su(4)}}} $。
We study finite-temperature properties of the Kondo effect in a carbon nanotube (CNT) quantum dot using the Wilson numerical renormalization group (NRG). In the absence of magnetic fields, four degenerate energy levels of the CNT consisting of spin and orbital degrees of freedom give rise to the SU(4) Kondo effect. We revisit the universal scaling behavior of the SU(4) conductance for quarter- and half-filling in a wide temperature range. We find that the filling dependence of the universal scaling behavior at low temperatures $T$ can be explained clearly with an extended Fermi-liquid theory. This theory clarifies that a $T^{2}$ coefficient of conductance becomes zero at quarter-filling whereas the coefficient at half-filling is finite. We also study a field-induced crossover from the SU(4) to SU(2) Kondo state observed at the half-filled CNT dot. The crossover is caused by the matching of the spin and orbital Zeeman splittings, which lock two levels among the four at the Fermi level even in magnetic fields $B$. We find that the conductance shows the SU($4$) scaling behavior at $μ_{B}B<k_{B}T_{K}^{\mathrm{SU(4)}}$ and it exhibits the SU($2$) universality at $μ_{B}B\gg k_{B}T_{K}^{\mathrm{SU(4)}}$, where $T_{K}^{\mathrm{SU(4)}}$ is the SU($4$) Kondo temperature. To clarify how the excited states evolve along the SU(4) to SU(2) crossover, we also calculate the spectral function. The results show that the Kondo resonance width of the two states locked at the Fermi level becomes sharper with increasing fields. The spectral peaks of the other two levels moving away from the Fermi level merge with atomic limit peaks for $μ_{B}B \gtrsim k_{B}T_{K}^{\mathrm{SU(4)}}$.