论文标题
单位磁盘上拉普拉斯本征函数的增长率
Growth rates of Laplace eigenfunctions on the unit disk
论文作者
论文摘要
我们对单位磁盘上的$ l^2 $ n固定的拉普拉斯特征函数的增长率进行了描述。特别是,我们表明,Dirichlet和Neumann征收功能的增长率都远离零。我们的方法始于P. sarnak的生长指数,并为贝塞尔功能或其零使用了几种关键的渐近公式。
We give a description of the growth rates of $L^2$-normalized Laplace eigenfunctions on the unit disk with Dirichlet and Neumann boundary conditions. In particular, we show that the growth rates of both Dirichlet and Neumann eigenfunctions are bounded away from zero. Our approach starts with P. Sarnak growth exponents and uses several key asymptotic formulas for Bessel functions or their zeros.