论文标题

COVID-19传输的温度依赖性

Temperature dependence of COVID-19 transmission

论文作者

Notari, Alessio

论文摘要

最近的冠状病毒大流行在其早期阶段几乎呈指数增长,许多国家 /地区在许多国家 /地区的案例数量非常适合$ n(t)\ propto e^{αt} $。我们分析了每个国家的利率$α$,从总体案例的阈值开始,然后使用接下来的12天,从而既同质地捕获早期增长。我们在流行病的月份中寻找$α$和每个国家的平均温度$ t $之间的联系。我们分析了42个国家的一组{\ it基地}集合,该{\ IT中间}集合了88个国家和{\ it扩展}集合的125个国家,该集已经发展了这一流行病。应用线性拟合$α(t)$,我们发现越来越多的证据表明$ t $的函数减少了$α$,$ 99.66 \%$ c.l。,$ 99.86 \%$ c.l。和$ 99.99995 \%$ c.l. ($ p $ -VALUE $ 5 \ CDOT 10^{ - 7} $,或5 $σ$检测)分别分别在{\ it base}中,{\ it InterMediate}和{\ it扩展}数据集。预计加倍时间将增加$ 40 \%\ sim 50 \%$,从$ 5^\ circ $ c到$ 25^\ circ $C。在{\ it base base}集合中,超越了线性模型,峰值为$(7.7 \ pm 3.6)^\ circ c $,但它的证据似乎是在较大的数据集中消失的。我们还分析了可能的偏见:贫穷的国家通常位于温暖的地区,可能的测试可能较低。通过排除在给定GDP以下的国家 /地区,我们发现我们的结论仅受到略有影响,并且仅对{\ it扩展}数据集有所影响。意义仍然很高,$ p $ - 价值为$ 10^{ - 3} -10^{ - 4} $或更少。我们的发现使人们希望,对于北半球国家,由于天气暖和和锁定政策,增长率应大大降低。通常,在寒冷季节到来之前,应有望通过强烈的锁定,测试和跟踪政策来阻止传播。

The recent coronavirus pandemic follows in its early stages an almost exponential growth, with the number of cases quite well fit in time by $N(t)\propto e^{αt}$, in many countries. We analyze the rate $α$ for each country, starting from a threshold of 30 total cases and using the next 12 days, capturing thus the early growth homogeneously. We look for a link between $α$ and the average temperature $T$ of each country, in the month of the epidemic growth. We analyze a {\it base} set of 42 countries, which developed the epidemic earlier, an {\it intermediate} set of 88 countries and an {\it extended} set of 125 countries, which developed the epidemic more recently. Applying a linear fit $α(T)$, we find increasing evidence for a decreasing $α$ as a function of $T$, at $99.66\%$C.L., $99.86\%$C.L. and $99.99995 \%$ C.L. ($p$-value $5 \cdot 10^{-7}$, or 5$σ$ detection) in the {\it base}, {\it intermediate} and {\it extended} dataset, respectively. The doubling time is expected to increase by $40\%\sim 50\%$, going from $5^\circ$ C to $25^\circ$ C. In the {\it base} set, going beyond a linear model, a peak at $(7.7\pm 3.6)^\circ C$ seems to be present, but its evidence disappears for the larger datasets. We also analyzed a possible bias: poor countries, often located in warm regions, might have less intense testing. By excluding countries below a given GDP per capita, we find that our conclusions are only slightly affected and only for the {\it extended} dataset. The significance remains high, with a $p$-value of $10^{-3}-10^{-4}$ or less. Our findings give hope that, for northern hemisphere countries, the growth rate should significantly decrease as a result of both warmer weather and lockdown policies. In general the propagation should be hopefully stopped by strong lockdown, testing and tracking policies, before the arrival of the cold season.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源