论文标题
使用置信度异常检测在胸部X射线图像上筛查病毒性肺炎
Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection
论文作者
论文摘要
在短时间内,病毒性肺炎的簇可能是爆发或大流行的预兆,例如SARS,MERS和最近的Covid-19。使用胸部X射线对病毒肺炎的快速准确检测在大规模筛查和流行病预防中可以显着有用,尤其是当其他胸部成像方式较少的情况下。病毒肺炎通常具有多种原因,并且在X射线图像上表现出明显不同的视觉外观。病毒的演变和新型突变病毒的出现进一步导致了大量数据集转移,这极大地限制了分类方法的性能。在本文中,我们制定了将病毒性肺炎与非病毒肺炎和健康对照区分开为基于单级分类的基于基于单分类的异常检测问题的任务,从而提出了置信度意识到的异常检测(CAAD)模型,该模型由共享符号提取器,一种共享的函数提取器,一种无分析检测模块和信心预测模块。如果由异常检测模块产生的异常得分足够大,或者置信预测模块估计的置信度得分足够小,我们接受输入为异常情况(即病毒肺炎)。我们方法比二进制分类的主要优点是,我们避免对单个病毒性肺炎类别进行明确建模,并将所有已知的病毒性肺炎病例视为增强单级模型的异常。提出的模型在临床X病毒数据集上的表现优于二进制分类模型,其中包含5,977个病毒性肺炎(NO COVID-19)病例,18,619例非病毒性肺炎病例和18,774个健康对照组。
Cluster of viral pneumonia occurrences during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19. Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention, particularly when other chest imaging modalities are less available. Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images. The evolution of viruses and the emergence of novel mutated viruses further result in substantial dataset shift, which greatly limits the performance of classification approaches. In this paper, we formulate the task of differentiating viral pneumonia from non-viral pneumonia and healthy controls into an one-class classification-based anomaly detection problem, and thus propose the confidence-aware anomaly detection (CAAD) model, which consists of a shared feature extractor, an anomaly detection module, and a confidence prediction module. If the anomaly score produced by the anomaly detection module is large enough or the confidence score estimated by the confidence prediction module is small enough, we accept the input as an anomaly case (i.e., viral pneumonia). The major advantage of our approach over binary classification is that we avoid modeling individual viral pneumonia classes explicitly and treat all known viral pneumonia cases as anomalies to reinforce the one-class model. The proposed model outperforms binary classification models on the clinical X-VIRAL dataset that contains 5,977 viral pneumonia (no COVID-19) cases, 18,619 non-viral pneumonia cases, and 18,774 healthy controls.