论文标题

一般视频游戏的滚动范围进化算法

Rolling Horizon Evolutionary Algorithms for General Video Game Playing

论文作者

Gaina, Raluca D., Devlin, Sam, Lucas, Simon M., Perez-Liebana, Diego

论文摘要

游戏玩法的进化算法,特别是滚动的Horizo​​n进化算法,最近在许多视频游戏中都设法以获胜率击败了最先进的现状。但是,游戏中的最佳结果高度取决于在几篇论文中引入的修改和混合体的特定配置,每篇论文中都会为核心算法添加其他参数。此外,由于可能性空间已经超出了详尽的搜索,因此仅从几种人类采摘的组合中发现了最好的先前发表的参数。本文以滚动式进化算法的形式介绍了最新的算法,并结合了文献中描述的所有修改以及新的修改,以进行大型的混合体。然后,我们使用一个参数优化器,即N-tuple Bandit Evolutionary算法,从一般视频游戏AI框架中的20个游戏中找到最佳参数组合。此外,我们分析了该算法的参数,并通过优化过程揭示了一些有趣的组合。最后,我们通过自动探索​​RHEA的较大参数空间来找到多个游戏中最新的解决方案。

Game-playing Evolutionary Algorithms, specifically Rolling Horizon Evolutionary Algorithms, have recently managed to beat the state of the art in win rate across many video games. However, the best results in a game are highly dependent on the specific configuration of modifications and hybrids introduced over several papers, each adding additional parameters to the core algorithm. Further, the best previously published parameters have been found from only a few human-picked combinations, as the possibility space has grown beyond exhaustive search. This paper presents the state of the art in Rolling Horizon Evolutionary Algorithms, combining all modifications described in literature, as well as new ones, for a large resultant hybrid. We then use a parameter optimiser, the N-Tuple Bandit Evolutionary Algorithm, to find the best combination of parameters in 20 games from the General Video Game AI Framework. Further, we analyse the algorithm's parameters and some interesting combinations revealed through the optimisation process. Lastly, we find new state of the art solutions on several games by automatically exploring the large parameter space of RHEA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源